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HOW DID WE GET
HERE?

How do the conditions for habitability
develop during the process of planet
formation?

With sensitive and high-resolution far-IR spectroscopy Origins will illuminate the path of water
and its abundance to determine the availability of water for habitable planets.

ARE WE
ALONE?

Do planets orbiting M-dwarf stars
support life?

By obtaining precise mid-infrared transmission and emission spectra, Origins will assess the
habitability of nearby exoplanets and search for signs of life.
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Using sensitive spectroscopic capabilities of a cold telescope in the infrared, Origins will measure
properties of star-formation and growing black holes in galaxies across all epochs in the Universe.
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By obtaining precise mid-infrared transmission and emission spectra, Origins will assess the
habitability of nearby exoplanets and search for signs of life.

* Understand how our Solar System formed and how it is evolving

* Understand how life emerged on Earth and possibly elsewhere in our Solar System
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Once upon a
time the Earth
formed dry

Rocky planetesimals Icy planetesimals
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Earth's water content
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2.5 3.0 4.0
Distance from the Sun (AU)

Water mass fraction increases with distance
from the Sun

“Textbook model”: temperature in the terrestrial
planet zone too high for water ice to exist

Water and organics were most likely delivered
later by comets or asteroids

Alternative: water could have survived,
incorporated into olivine grains or through
oxidation of an early H atmosphere by FeO in
the magma ocean



“Textbook” D/H in Water in
the Solar Nebula

Variations in the D/H ratio: progressive

isotopic exchange reactions between HDO
and H,

Water was initially synthesized by
interstellar chemistry with a high D/H ratio
(>7.2%x10-4; highest value measured in clay
minerals)

The D/H ratio in the solar nebula then
gradually decreased with time

Turbulent mixing of grains condensed at
different epochs and locations in the solar
nebula leads to a D/H gradient

Short period
Comets

f=(DH),,, /(D/H),

Long period

Comets
25 30 35

Radius (AU)

Jupiter Neptune

Horner et al. 2007



Alternative Models

----- t=0.1 Myr

== 1=0.2 Myr
—1=0.3 Myr
---t=0.5 Myr| *

Yang et al. (2013)

A coupled dynamical and chemical
model

D/H time dependent and may
decrease in the outer regions

Water thermally processed in the
inner disk transported outward

Need observational data to test
the models, in particular in the
outer Solar System



Isotopic Ratio
Measurements

7
Ry 'y
e ;
S

Rosetta



Isotopic Ratio
Measurements

Rosetta
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* No trends with physical or dynamical parameters
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Complex Solar System Dynamics:
Grand Tack Model

* Inward then outward migration of

Jupiter and Saturn leads to complete
disappearance of the gas disk

* Happens within first ~5 Myr
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Walsh et al. 201 |
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Complex Solar System Dynamics:
Nice Model

a) b) c)




D/H Distribution
Inner vs. Outer Solar System

[ ] CLLCM,CV Chondrites
[ CR Chondrites

170 195 220

Alexander (2006)

* D/H in the inner Solar System
relatively well constrained by
measurements in meteorites



D/H Distribution
Inner vs. Outer Solar System

[ ] CLLCM,CV Chondrites
[ CR Chondrites

Alexander (2006)

* D/H in the inner Solar System
relatively well constrained by
measurements in meteorites

* D/H in the outer Solar System poorly
constrained — few measurements
with large uncertainties
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SOFIA/upGREAT+4GREAT

1810 - 1950 _ , 7 x 2 Pixels
Low Frequency Array : LFA OH lines, [CIl],CO series, [Ol] Cryo-Cooler
1830 - 2070 (2 Pol)

High Frequency Array : HFA 4744 Cryo-Cooler
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Comet S

46P/Wirt e oAl
46P /Wirtanen : 5 E 7 :
H,'®0: 30520 (150) : EEE Image: V. Cheng
| | é:? 14 16 18 20

UT Day (Dec 2018)

* Perihelion on 12/12/18 at 1.055 au from the Sun

* Closest approach on [12/16/18 at 0.08 au from the
Earth

* Five SOFIA flights between December 14 and 20
(GT+DDT)

 D/H = (1.61£0.65)x104including statistical,
calibration, modeling, and '¢O/!80 ratio

||\ kn“.ﬂw ]r“‘“flﬂ I'ﬂlﬂ IlJUh\ : ““fel‘tain.ties

Third Jupiter-family comet with a D/H ratio
il HF il Lhgiss |
consistent with the Earth’s ocean value

© ["HDO: 27+8.8 (3.10) |

* What is special about the comets with a low D/H
ratio!?

Lis et al. (2019)



Hyperactive Comets

Emit more water molecules
than can be expected given the
size of the nucleus

Presence of sublimating water-
ice-rich particles in the coma

Archetype 103P/Hartley
studied by Deep Impact —
both icy grains and water
overproduction were
observed
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D/H vs. Active Fraction
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D/H vs. Active Fraction
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* Comets with active fraction above 0.5 typically have terrestrial D/H ratios

* Large reservoir of ocean-like water in the outer Solar System
|5



Possible Interpretations!?
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Hyperactive comets are ice-rich
objects that formed just outside
the snow line

Observed anti-correlation
between active fraction and
nucleus size argues against this

Planetesimals outside the snow
line are expected to undergo
rapid growth

Hyperactive comets formed in
the outer Solar System from
water thermally processed in the
inner disk (Yang et al. model)

Isotopic properties of water
outgassed from the nucleus and
icy grains may be different

Need laboratory measurements
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Hyperactive comets are ice-rich
objects that formed just outside
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Observed anti-correlation
between active fraction and
nucleus size argues against this

Planetesimals outside the snow
line are expected to undergo
rapid growth

Hyperactive comets formed in
the outer Solar System from
water thermally processed in the
inner disk (Yang et al. model)

Isotopic properties of water
outgassed from the nucleus and
icy grains may be different

Need laboratory measurements
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Water Irail with Herschel
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* Clouds ™ Cores ™Disks " Planetary systems

* Oirigin of Solar System materials
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Water in the Solar System

SWAS, Sept. 1999

Cassini
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Enceladus — Hartogh et al. 201 |

Strength of water absorption
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Ceres — Kiippers
etal. 2014
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Dawn, Juling Crater _8 ,‘
Raponi et al. 2018 |,

* Galilean satellites — origin
of water in the atmosphere
not well understood

* Main belt comets !
Framing Camera ™
observation at L1 i



Comets

Inner Solar System Outer Solar System Oort Cloud




D/H Pre-Herschel

- Hyakutake/CSO

. Hyakutake

Titan Proto—Neptunian ’ N +2092T7+ +
ices = {

Mart. CH3D Ice + ?200104

. . L bk
X C. Halley ale BON " A :
Cassini - HD CH5D . R, .
meteorite EO rth : 22 e e
ISO IS0 ' LA

CH;D.

HD  p HD +

LA
HDO 465 GHz

Galileo SO ISO
CH3D» Protosolar
Ca;sini

Jupiter  Saturn  Uranus Neptune

Temperature (K)

T
GEOGRAPHIC

e Protosolar D/H ratio in H, is ~2.5x10-> (same as the Big Bang)

e Farth's ocean ratio (Vienna Standard Mean Ocean Water) is |1.56x10-4— Mantle water?
 D/H in water in Oort cloud comets is ~3x10-4— Jupiter Family comets?

* Most probable source of Earth water: ice-rich reservoir in the outer asteroid belt
* Comets could have contributed less than 10% of the Earth’s water

23



D/H Herschel

—- Hale—Bopp
Hartley 2

—— Enceladus
W & Hadlley
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Hartogh et al. 201 |, Lis et al. 201 3, Bockelée-Morvan et al. 2012

* D/H in two Jupiter Family comets consistent with the VSMOV value
* A low D/H value measured in an Oort cloud comet
* The high pre-Herschel D/H values are not representative of all comets
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D/H Rosetta

Jupiter family
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* Confirmed by Rosetta

e 67P Churyumov-

D/H three times VYSMOW

* No trends with physical
or dynamical parameters
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@ AGREAT: How does it look like?

Operation in parallel with other “GREAT”
cryostats

4 colors co-aligned on sky.

The signal from sky is separated to feed the four
detectors simultaneously

Closed-cycle cooler

Lowest frequency for CH1 : 492 GHz. Optics
constraints.

4 individual solid state local oscillator sources,
allowing independent tuning.

Durdn et al. 2017




@4GREAT Mixers — SIS: CH1 and CH2

CH1 - HIFl 1 : Developed by
LERMA for Herschel HIFI

F_LO(GHz)

el 1 - Noise temperature for QMO0 at 2K and 42K Data

provided by LERMA

Band Technology Tsys Manufacturer
CH1 SIS 300 LERMA
CH2 SIS 500

' CH2 - HIFI 4 (special version) — Developed by SRON for Herschel HIFI

Duran et al. 2017
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Wirtanen — December 2018

46P/Wirtanen Bl’lg htness Updated 15 May 2019

Prediction:; 7 ) Filter
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* Perihelion on December 12 at 1.055 au from the Sun
* Closest approach on December |6 at 0.08 au from the Earth Image:
* Five SOFIA flights between December 14 and 20 (GT+DDT) L Moniand



SOFIA Observations

14 16 18 20
UT Day (Dec 2018)

Flight UT time h A t(H2'80) | o(H:'#0) | t(HDO) | o(HDO)
(hr) (au) (au) ally) (mK) (min) (mK)
I Dec 14,4.89-7.47 1.056 | 0.079 16.5 80 29.2 43
2 Dec 17,7.56-9.68 1.057 | 0.078 1.2 125 30.8 38
3 Dec 18,9.59-12.17 1.058 | 0.078 13.8 |12 30.3 37
! Dec 19,9.78-12.00 1.059 | 0.079 14.9 85 25.6 42
5 Dec 20, 9.83-12.33 1.060 | 0.08l 1.6 105 34.1 31

* Flight time ~3 h per flight — longest time allowed by the flight planning

* Total on-source integration time 64 and |50 min for H2!80 and HDO, respectively
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Complex Solar
System
Dynamics
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* Radiometric dates of major impact events on the
- Moon ~4 billior




